
Delivery Methodology

Copyright 2024 
All rights reserved.

Version
2024.1.0.1



Copyright 2024. All rights reserved.

Methodology Overview 
Delivering complex business systems can be 
challenging. Studies suggest that the failure 
rate for large-scale IT business projects is 
between 70% and 90%. This stems from all sorts 
of factors such as scope creep, budget issues, 
inadequate planning, training, competing ideas, 
poor support, delays, etc. More often than not, 
you can trace these issues back to a single and 
often underrated factor: the lack of a clear and 
comprehensive methodology.

Nexoid’s methodology differs from other 
methodologies because it’s not just a best 
practice document, but a synopsis of decades 
of experience. Over the years, we have observed 
the very best and the very worst practices. Our 
methodology serves as a reservoir of knowledge 
extracted from clients, suppliers, partners, and 
of course, our projects. As with everything 
at Nexoid, we are constantly reviewing and 
improving our systems and offerings. Perfection 
is a journey, not a destination.

Our delivery methodology incorporates a hybrid 
model, utilising the most effective elements 
from Waterfall, Agile, Lean, and SDLC (System 
Development Life Cycle). This document is a 
concise guide on integrating and capitalising on 
each methodology. 

Contents
1. Project Discovery: The project discovery 
phase employs a bespoke approach, blending 
traditional SDLC with elements of Waterfall, 
Agile, and Lean methodologies to precisely 
meet IT project requirements. Our process 
starts with a thorough analysis of project needs, 
engaging in iterative development and client 
consultations to form a clear and prioritised 
product backlog. Emphasising the creation of 
a Minimum Viable Product (MVP) and careful 
scope management, our methodology is 
designed to be responsive to changes and 
aligned with the evolving needs of our clients.

2. Project initiation: In the project initiation 
phase, we focus on comprehensive planning, 
covering aspects such as personnel 
involvement, resource allocation, methodology 
training, and budgeting. Emphasising effective 
communication and risk management, 
we establish clear protocols and use Agile 
methodologies to ensure all stakeholders 
are aligned and engaged. The culmination 
of this phase is the creation of a detailed 
project charter, formalising the project’s scope, 
objectives, and team roles, essential for guiding 
the project to successful completion.

3. Software Development Process: Nexoid’s 
software development approach is a unique 
blend of Waterfall, Agile, Lean, and SDLC 
methodologies, tailored to deliver high-quality, 
client-centric software solutions. Emphasising 
flexibility, efficiency, and comprehensive 
oversight, our process begins with a deep 
understanding of client needs and aims for a 
Minimum Viable Product within a structured 
budget framework. This strategic combination 
allows for responsive development, rigorous 
planning, and a focus on long-term software 
viability.

4. Implementation and Change Management: 
The “Implementation and Change 
Management” phase in a project is crucial, 
where the focus shifts significantly towards 
managing the human elements of change. 
At Nexoid, this phase involves addressing 
challenges like resource constraints and 
technology adaptation, while emphasising 
the importance of clear communication, 
training, and leadership support. Key to our 
approach is the identification of “champions” - 
individuals who advocate for change, provide 
feedback, and guide others, ensuring a smooth 
transition and mitigating the risks of project 
dissatisfaction and failure.



Copyright 2024. All rights reserved.

5. Post-Deployment Support and 
Maintenance: In this phase, we prioritise 
ensuring software compatibility and 
functionality amidst the ever-evolving IT 
landscape. This phase encompasses rigorous 
testing, continuous updates, user training, 
and proactive change management, alongside 
a clear warranty policy for our services. Our 
comprehensive approach guarantees high-
quality maintenance and support, ensuring 
both immediate effectiveness and long-term 
reliability of our software solutions.

6. Compliance and Security Considerations: 
Nexoid’s approach to IT compliance and 
security involves embedding these principles 
deeply within organisational processes, ensuring 
not only adherence but continual improvement. 
Our comprehensive strategy includes 
proactive monitoring, integrating security 
into development cycles, collaborative risk 
management, and a strong focus on continuous 
improvement through Agile practices. 
Emphasising GDPR and HIPAA compliance, we 
maintain a culture of responsibility, ensuring 
all operations align with evolving legal and 
industry standards.

7. Glossary of Terms: This glossary provides 
key definitions for terms used in Nexoid’s 
delivery methodology, offering clarity on 
concepts crucial to the project lifecycle.

1. Project Discovery
In the project discovery phase, we begin by 
understanding what needs to be delivered. We 
enhance the traditional System Development 
Life Cycle (SDLC) with a mix of Waterfall, 
Agile, and Lean practices, customising our 
approach to meet the specific requirements and 
expectations of IT projects. This process starts 
with requirements analysis, involving iterative 
development and client feedback through direct 
interviews and consultations.

We create a comprehensive product backlog, 
a prioritised list of features and functionalities, 
which forms the foundation of our development 
work. Sprints, typically lasting 1-2 weeks, are 
then used to develop, test, and review these 
features, ensuring we stay ahead in planning 
and maintain a continuous workflow. This 
approach allows us to adapt quickly to changes, 
keeping the development aligned with the 
client’s evolving needs.

Our methodology emphasises the importance 
of defining the project’s objectives and scope, 
such as business goals, target audience, and 
the value offered. We engage with stakeholders 
to identify these elements, ensuring clarity on 
the product’s purpose, users, and interaction. 
Setting realistic deadlines and defining both 
functional and non-functional requirements are 
crucial steps in this process.

We use Agile methodologies to prioritise tasks 
and focus on developing a Minimum Viable 
Product (MVP), the most simplified version 
of the product that still functions solving the 
business need. This lean approach expedites 
time to market and lays a foundation for future 
enhancements. Our methodology is designed 
to evolve with feedback and real-world use, 
ensuring that the product not only meets initial 
requirements but also adapts to emerging 
needs.

Scope management is key to avoiding scope 
creep, which can lead to delays and budget 
increases. We see scope evolution as an 
opportunity to refine the product, carefully 
balancing changes to ensure they add value 
without compromising the project’s overall 
objectives. Determining success criteria, 
considering interoperability, and assigning 
clear roles and responsibilities are integral to 
our process. We also employ a comprehensive 
User Acceptance Testing (UAT) plan and use 
the ‘Definition of Done’ (DoD) to gauge project 
completion, aligning the metrics of all parties 
involved.



Copyright 2024. All rights reserved.

2. Project initiation
In the project initiation phase, we focus on 
identifying key elements such as necessary 
personnel, external resources, methodology 
and project training, budget and scope, as well 
as roles and responsibilities. Budgeting takes 
into account all expenses, including manpower, 
tools, training, and contingency funds. We also 
emphasise learning from past experiences to 
guide current projects effectively.

Communication is a crucial aspect at this 
stage. We establish communication protocols, 
particularly for feedback, which is central to 
Agile’s iterative process. This involves defining 
the frequency and channels of communication 
to keep all team members and stakeholders 
informed and engaged.

Conducting a preliminary risk assessment 
is essential to identify potential challenges. 
We follow a structured approach to risk 
management, which includes identifying 
and analysing risks, assigning responsibility, 
developing mitigation strategies, and regularly 
monitoring risks. A risk matrix helps us rate risks 
based on probability and impact, but we remain 
cautious of its complexity and subjectivity.

Project planning tools are selected for effective 
scheduling, budgeting, resource allocation, and 
communication. The Risk Register is another 
tool we employ to track and mitigate identified 
risks.

In terms of project costing in Agile 
environments, we estimate effort through user 
stories, assigning story points and running initial 
sprints to gauge effort levels. The total cost 
is calculated by considering sprint costs and 
adding a contingency margin for unexpected 
issues. We offer pricing options that can range 
from fixed estimates to a pay-as-you-go model.

We also use a burndown rate to monitor the 
progress of the project, ensuring that work 
is completed within the set timeframe and 
identifying any deviations from the expected 
trajectory.

Finally, a comerehensive project charter is 
developed, outlining the project’s vision, 
objectives, scope, and team composition. 
This document, especially crucial for larger 
projects, provides a formal authorisation for the 
project and is typically approved by the project 
sponsor, ensuring all stakeholders are aligned 
and the project is set for success.

3. Software Development 
Process
In the world of project management, Waterfall 
and Agile stand out as two predominant styles. 
Waterfall, with its structured approach, is 
excellent for budgeting and planning, but it’s 
often chosen more out of habit than suitability 
for software projects. In contrast, Nexoid prefers 
an Agile or evolutionary methodology, which is 
widely recognized as the standard in software 
development. Agile’s iterative nature, despite 
potential challenges with budget overruns and 
shifting objectives, enhances project success 
rates.

At Nexoid, we’ve developed a unique approach 
that blends the strengths of Waterfall, Agile, 
Lean, and SDLC (System Development Life 
Cycle) methodologies. This combination ensures 
we deliver high-quality software solutions that 
are precisely tailored to our clients’ needs.

For strategic planning and budgeting, we 
use Waterfall due to its sequential nature, 
which aligns well with high-level management 
expectations and provides a clear project 
roadmap. However, we’re cautious of its 
inflexibility, as it may not cater well to evolving 
business needs.

Agile methodology comes into play for its 
adaptability and focus on client value. It allows 
us to be responsive in product development 
and encourages regular feedback from clients. 
Our project managers use strict prioritisation 
and review processes to avoid the potential 
sprawl of Agile projects.



Copyright 2024. All rights reserved.

We further enhance our approach with Lean 
principles, aiming for maximum targeted effort. 
By focusing on creating a Minimum Viable 
Product (MVP), we deliver what’s needed to 
solve the customer’s problem without over-
engineering, keeping our projects focused and 
on budget. We ensure that Lean’s rigorous, 
evidence-based approach is consistently 
applied.

SDLC is our comprehensive framework that 
goes beyond the initial software launch. It 
covers the entire lifespan of the software, 
emphasising post-launch activities like support, 
maintenance, and iterative improvements, 
thus ensuring the software’s adaptability and 
longevity.

Our development process starts with a deep 
understanding of the client’s needs, involving 
discussions with clients, developers, and 
business analysts. This initial understanding aids 
in budget estimation and defining the MVP, 
which is the quickest solution that meets the 
customer’s technical needs.

Our aim is to reach MVP within 40% of the 
allocated budget, leaving the remaining 60% 
for further improvements and refinements. This 
latter portion is managed using typical Agile 
methodologies, where we demonstrate the 
MVP to the client and create a backlog - a list 
of changes, improvements, and additions, each 
with an estimated time for completion.

We then move into fortnightly sprints, 
prioritising tasks for the next two weeks. This 
iterative sprint pattern ensures we make the 
most efficient use of resources and maximise 
value for our clients.

4. Implementation and 
Change Management
The “Implementation and Change 
Management” phase is a pivotal stage in a 
project where its success is heavily influenced 
by how well the human aspects are managed. 
Despite thorough planning, various challenges 
can arise, such as resource limitations or 

technological issues. However, the readiness 
and willingness of the people involved to adapt 
to changes play a crucial role.

This phase demands more than just a robust 
plan; it requires careful attention to the 
individuals involved. Clear communication, 
effective training, and supportive leadership 
are key to navigating this stage successfully. 
Ensuring that everyone understands and 
embraces the new changes is vital. Resistance 
to change is a common hurdle, as people 
are often hesitant to alter familiar ways of 
working. Recognising that successful change 
management involves both the adoption of 
new systems and the willingness of people to 
engage with these changes is crucial.

At Nexoid, we address this challenge by 
identifying and nurturing “champions” within 
the team. These individuals are characterised 
by their positive attitude, eagerness to learn, 
and desire to advance their careers. Champions 
play multiple roles: they advocate for the new 
changes, ensuring everyone understands their 
importance and benefits; they listen to the 
team’s concerns and feedback, facilitating 
timely resolutions to issues; and they act as 
guides, helping others to navigate and embrace 
the new processes.

Champions are also instrumental during the 
release phase of a project. Software releases 
with faults can cause dissatisfaction within the 
team, potentially leading to a cascading effect 
of negativity and project failure. By having 
champions in place, this risk is mitigated as they 
help maintain team morale and focus on the 
positive aspects of the project.

While champions are a valuable asset, it’s 
important to note that this approach does not 
directly address the quality of work or the actual 
progress of the remaining tasks. Therefore, 
we use this strategy as one of several tools 
within the project, ensuring a balanced and 
comprehensive approach to implementation 
and change management.



Copyright 2024. All rights reserved.

5. Post-Deployment Support 
and Maintenance
In the “Post-Deployment Support and 
Maintenance” stage of software development, 
we recognise that software release is complex, 
requiring numerous factors and components to 
work in harmony. As the IT world is constantly 
evolving, our ERP and ITSM solutions require 
continuous updates to stay compatible with 
new technological advancements. Post-
deployment support and maintenance are 
integral to our service, ensuring our solutions 
are compatible with both current and future 
technology.

We employ techniques like Feature Flags 
and A/B testing to manage functionality and 
gather feedback, ensuring software readiness 
before widespread release. Our testing phases, 
including unit, integration, system, and User 
Acceptance Testing (UAT), are rigorous to 
ensure compliance with technical standards and 
requirements.

Once software goes live, our focus shifts to 
maintenance and continuous improvement, 
including routine updates and adjustments. We 
prioritise user training and support to ensure 
proficiency and comfort with the new software. 
Our maintenance strategy involves regular 
health checks, upgrades, and performance 
tuning, all tailored to the needs of users and 
administrators.

We proactively manage software changes, with 
clear protocols for change implementation 
and thorough impact analyses. Our approach 
ensures that software remains reliable, effective, 
and aligns with evolving user requirements.

Our Definition of Done (DOD) criteria means 
a project is only finished when all deliverables 
meet stakeholder approval, acceptance criteria, 
and the agreed scope. We ensure that all 
commitments, including verbal promises, are 
fulfilled.

We offer a clear warranty period for our 
services, covering free maintenance support for 
a set time after release. This warranty applies 
to both custom client-specific code and our 
shared Nexoid platform, ensuring seamless 
updates and fixes. However, we distinguish 
between changes affecting our shared platform 
and client-specific systems, with maintenance 
responsibilities clearly defined.

By adhering to this methodology, we aim for 
the highest possible success rate, ensuring 
satisfaction at every level. A comprehensive 
post-project report is compiled and archived 
for future reference, leaving no room for 
interpretation and ensuring clarity and success 
in our software development endeavours.

6. Compliance and Security 
Considerations
In Nexoid’s dynamic IT landscape, compliance 
and security are embedded into organisational 
processes, ensuring active maintenance and 
improvement of standards. We go beyond basic 
client and industry requirements by engaging 
in robust monitoring of safety, risk, and 
compliance, including regular assessments, real-
time surveillance, and stakeholder engagement. 
Our approach to safety and legal compliance is 
rigorous, integrating security practices into the 
development cycle and resolving compliance 
conflicts effectively.

Risk management is collaborative, involving 
clients in identifying and mitigating risks, with 
warranties underlining our commitment to 
managing these risks. Our methodology for 
continuous improvement is inspired by the 
scientific method, involving identification, 
planning, testing, and refining processes. This is 
facilitated through Agile management, enabling 
us to adapt and improve contiwnuously.

We place a strong emphasis on feedback 
loops, training, and leveraging technology to 
enhance compliance measures. Our training 
initiatives are tailored to client needs, ensuring 
awareness of compliance standards and 
security best practices. Compliance monitoring 



Copyright 2024. All rights reserved.

is comprehensive, involving regular audits, 
legal updates, and cross-functional team 
collaboration to ensure adherence at every 
level.

Particularly, we focus on GDPR, HIPAA, and 
other data protection regulations, ensuring 
alignment of all IT operations with these laws. 
Our GDPR compliance framework includes Data 
Protection Impact Assessments, maintaining 
detailed data processing records, and 
appointing a Data Protection Officer.

In summary, Nexoid’s commitment to 
compliance and security is a culture of 
responsibility and awareness, combining 
stringent monitoring, client-participative risk 
management, continuous improvement, and 
comprehensive training to embed a deep 
understanding of compliance requirements in 
all operations.

7. Glossary of Terms
A/B Testing: A method of comparing two 
versions of a webpage or app against each 
other to determine which one performs better.

Agile: A project management methodology 
characterised by the division of tasks into short 
phases or iterations (sprints) and frequent 
reassessment and adaptation of plans.

Backlog: A prioritised list of tasks and 
requirements that the project team maintains 
for a project.

Burndown Rate: A metric in Agile project 
management that shows the rate at which work 
is completed and how much work remains.

Champion: A person who supports, promotes, 
and helps drive the change within an 
organisation, playing a key role in the successful 
implementation of new systems or processes.

Change Management: A systematic approach to 
dealing with change, both from the perspective 
of an organisation and the individual.

Continuous Improvement: The ongoing 
effort to improve products, services, or 
processes. These efforts can seek “incremental” 

improvement over time or “breakthrough” 
improvement all at once.

Cost Risks: Risks associated with the possibility 
of cost overruns due to inaccurate estimations 
or budgeting.

Definition of Done (DoD): A clear and concise 
list of criteria which all project tasks must meet 
before they are considered complete.

DevOps / DevSecOps: An approach to culture, 
automation, and platform design that integrates 
security as a shared responsibility throughout 
the entire IT lifecycle.

External Risks: Risks that come from outside 
the project’s direct control, such as regulatory 
changes or issues with vendors.

Feature Flags: A technique in software 
development that allows teams to modify 
system behaviour without changing code.

Feedback Loop: A process in which the outputs 
of a system are circled back and used as inputs.

Financial Risks: These encompass risks 
stemming from financial uncertainties like 
budget inaccuracies or funding inconsistencies.

Maintenance: The process of maintaining the 
software after it goes live, including routine 
updates and fixes.

Minimum Viable Product (MVP): The most 
pared-down version of a product that can still 
be released to market with a minimum set of 
features to satisfy early adopters and provide 
feedback for future development.

Mitigation Strategies: Techniques used to 
manage risks, including avoidance, acceptance, 
reduction, transfer, exploitation, enhancement, 
and sharing.

Module: In Nexoid ERP, a module is a 
distinct part of the software that can be used 
independently or with other modules to 
perform a specific business function.

Performance Risks: Risks that the project’s 
deliverables may not meet the required or 
expected standards or benchmarks.



Copyright 2024. All rights reserved.

Positive Risks: Also known as opportunities; 
these are events that, if they occur, will have a 
beneficial impact on the project’s objectives, 
like finishing tasks ahead of schedule or under 
budget.

Post-Deployment Support: Activities that 
occur after the software is released to ensure its 
continued operation and maintenance.

Project Lifecycle: The stages through which 
a project passes, typically initiation, planning, 
execution, monitoring, and closure.

Project Risk: The potential for unforeseen 
challenges or threats that may negatively 
influence the successful completion of a project. 
Risks can be uncertain and may not always 
materialise.

Release: The distribution of the final or new 
incremental version of the software to the users.

Risk Management Process: A systematic 
approach to identifying, analysing, and 
responding to project risks, which includes 
minimising, monitoring, and controlling the 
probability or impact of unfortunate events.

Risk Matrix: A grid for plotting the probability 
of a risk against its impact to help in the 
prioritisation of risk management actions.

Risk Register: A tool used in risk management 
processes to track identified risks, their severity, 
and the actions steps or plans put in place to 
mitigate them.

Schedule Risks: These include risks related 
to project delays or extensions beyond the 
planned schedule, often exacerbated by scope 
creep.

Scope Creep: The uncontrolled expansion to 
project scope without adjustments to time, cost, 
and resources.

SMART Goals: Acronym for Specific, 
Measurable, Attainable, Realistic, and Timely, 
which are the criteria for setting objectives for a 
project.

Sprint: A set timeframe during which specific 
work has to be completed and made ready for 
review in an Agile framework.

Stakeholder: An individual, group, or 
organisation who may affect, be affected by, 
or perceive itself to be affected by a decision, 
activity, or outcome of a project.

Strategic Risks: Risks arising from strategic 
mistakes, employing outdated methodologies, 
or incompatibilities with company culture.

System Development Life Cycle (SDLC): A 
process for planning, creating, testing, and 
deploying an information system, with stages 
often including analysis, design, development, 
and implementation.

System Testing: An integrated testing phase 
where the complete system is tested to verify 
that it meets the specified requirements.

UAT (User Acceptance Testing): A phase in 
the software development lifecycle where the 
software is tested by the intended audience 
or stakeholders in conditions that simulate 
production, to ensure it meets the required 
specifications and functionality.

UAT Environment: A testing environment that 
closely resembles the production environment 
but is used exclusively for user acceptance 
testing to safeguard against untested changes 
directly affecting the live system.

Workflow: The sequence of processes through 
which a piece of work passes from initiation to 
completion within the Nexoid ERP system.


